
9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 1/48

TreasureDAO A-1
Security Audit

August 22, 2022
Version 1.0.0

Presented by 0xMacro

https://0xmacro.com/
https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 2/48

Table of Contents

Introduction

Overall Assessment

Specification

Source Code

Issue Descriptions and Recommendations

Security Levels Reference

Disclaimer

Introduction

This document includes the results of the security audit for Treasure DAO's smart contract code as found in

the section titled ‘Source Code’.
The security audit was performed by the Macro security team from June 20,

2022 to July 22, 2022.

The purpose of this audit is to review the source code of certain Treasure DAO Solidity contracts, and

provide feedback on the design, architecture, and quality of the source code with an emphasis on validating

the correctness and security of the software in its entirety.

Disclaimer: While Macro’s review is comprehensive and has surfaced some changes that should be made to

the source code, this audit should not solely be relied upon for security, as no single audit is guaranteed to

catch all possible bugs.

https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 3/48

Overall Assessment

The following is an aggregation of issues found by the Macro Audit team:

Severity Count Fixed Acknowledged Won't Do

High 4 4 - -

Medium 5 5 - -

Low 7 7 - -

Code Quality 18 11 1 6

Gas Optimization 5 - 1 4

Treasure DAO was quick to respond to these issues.

Specification

Our understanding of the specification was based on the following sources:

https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 4/48

Discussions on Discord with the Treasure DAO team.

A privately accessible Google Docs link of documentation.

Source Code

The following source code was reviewed during the audit:

Repository:
treasure-staking

Commit Hash:
 19c1c232b88907ac62440f1c3a6543f22b25f2af

Specifically, we audited the following contracts within this repository:

Contract SHA256

harvester/Harvester.sol
b3ddb43736bb974750d7b035e70e0b40e0e6f9d84
ced208079c38a4df15d7641

harvester/HarvesterFactory.sol
fbf50539c1c29a2d1cc8094f5227edcc9d6348e0a
5d13109a3ae9858d8c1a141

harvester/Middleman.sol
d1b25e883fe3158c3732d3fbff804188c751811bf
f3416b0cb37978c354ebde1

harvester/NftHandler.sol
81e4f35458a9f9ad1029593b01e79319b7d069877
c5dbdc3f47e6e737630ae52

harvester/interfaces/IExtractorStakingRu

les.sol

bcc4c924d1711f69159e6682069da2c294dc0ab9c
5d169061497b9296c69b6eb

harvester/interfaces/IHarvester.sol
6733514f4fe96d9acc37bd794137a1a0cafa196f5
d68414c3973ba8c85d4fade

https://github.com/ghoul-sol/treasure-staking
https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 5/48

Contract SHA256

harvester/interfaces/IHarvesterFactory.s

ol

61bebb2f33efee7b2bc6ce247c7d22045301f1b87
338bbd0b59c0d8b0eee4023

harvester/interfaces/IMiddleman.sol
e1cbd6356e18232d3f35b9565af51e9f1a3b907a9
52eb7748fda001573b85bc6

harvester/interfaces/INftHandler.sol
b4e4a89043bc4159881e5fb18e9149fb41b0d7bd8
4fa5866cfb17fe300c252c2

harvester/interfaces/IPartsStakingRules.s

ol

c0d978c53b2ce0df967a3e9ad1747babe9a9339c9
4e12ef538208e6b5e67bb9f

harvester/interfaces/IStakingRules.sol
ebe01b23135912ee2a632314c495542b4c8dbfcae
13697fe8c40e921a27adb36

harvester/lib/Constant.sol
43bd37cc3a1d3a3f6278152e56ad69d11cca53f8b
372641535cff4ecf565a392

harvester/rules/ExtractorStakingRules.so

l

616597784a5cc4ec27f9d9b3b365b8cd7439dc545
815689c77a1767e32b98a7c

harvester/rules/LegionStakingRules.sol
7ca128960f6d00ec1a3dbda9f8dc00ea8d6ac4bf7
20f820524439647fe35989e

harvester/rules/PartsStakingRules.sol
e1b15b309f316beabef88ef9b8074564256159ac9
e5ff551dd2d461aa0388ea7

harvester/rules/StakingRulesBase.sol
881d6246ba488038b16a689955125bac7cd627d5d
4808915aaeec253809b6437

harvester/rules/TreasureStakingRules.sol
697f1233ece7c9bbf4ef2d8d53aab1f78fe8d0048
fda42a402840cecefa07fb8

Note: This document contains an audit solely of the Solidity contracts listed above. Specifically, the audit

pertains only to the contracts themselves, and does not pertain to any other programs or scripts, including

https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 6/48

deployment scripts.

Issue Descriptions and Recommendations

Click on an issue to jump to it, or scroll down to see them all.

H-1 Rewards distribution not working due to incorrect utilization boost factor

H-2 Boost factors are incorrectly combined

H-3 Harvesters with TreasureStakingRules configured cannot receive rewards

H-4 Unfair reward distribution between harvesters due to missed checkpoints in the case of

NFTs

M-1 Rewards distribution incorrect in presence of disabled harvesters

M-2 Unclaimed rewards for disabled harvester stuck in Middleman

M-3 Use of setExtractorAddress can break Extractor staking

M-4 LegionStakingRules parameter changes result in accounting discrepancies

M-5 Disabling the existing NftConfig leads to stuck NFTs

L-1 Unnecessary updateRewards executions and LogUpdateRewards event emissions

L-2 unstakeNft uses transferFrom instead of safeTransferFrom

L-3 Particular order of operations leads to deposit positions that cannot be properly

cleaned up

L-4 Harvester#getDepositTotalBoost calculation is incorrect

L-5 NftHandler should inherit from ERC721HolderUpgradeable

L-6 Reward distribution between harvesters is not checkpointed in the case of privileged

actions.

L-7 Depending on maxStakable, methods of ExtractorStakingRules can go out of gas

Q-1 Call to parent initializers should be executed with the highest priority

https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 7/48

Q-2 Unnecessary code duplication

Q-3 Important Harvester methods not defined in IHarvester interface

Q-4 Move event declarations from contract implementations to interfaces

Q-5 Implement corresponding interfaces for all StakingRules

Q-6 Remove unnecessary code

Q-7 Avoid using modifiers when they are applied only once

Q-8 In NftHandler modifiers canStake and canUnstake should revert

Q-9 Rename canStake and canUnstake in IStakingRules

Q-10 Remove unused event declaration in the Harvester

Q-11 Unused _user argument in the NftHandler modifiers

Q-12 Use the checks-effects-interactions pattern in stakeNft and unstakeNft

Q-13 Split ERC721 and ERC1155 handling into separate internal functions

Q-14 Use established conventions for error reporting

Q-15 Avoid using function naming conventions for variables

Q-16 Use common base for all constants in LegionStakingRules

Q-17 Improve code documentation

Q-18 Add user info to event parameters emitted by NftHandler

G-1 Replace unnecessary calls to getNftBoost within NftHandler

G-2 totalRewardsEarned is tracked unnecessarily in updateRewards

G-3 In calculateVestedPrincipal, consider removing unnecessary condition

G-4 External calls can be avoided by storing details in the contract itself

G-5 Consider not using the Counters library for extractorCount variable

Security Level Reference

https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 8/48

Level Description

High

The issue poses existential risk to the project, and the issue identified could

lead to massive financial or reputational repercussions.

We highly recommend fixing the reported issue. If you have already deployed,

you should upgrade or redeploy your contracts.

Medium

The potential risk is large, but there is some ambiguity surrounding whether or

not the issue would practically manifest.

We recommend considering a fix for the reported issue.

Low

The risk is small, unlikely, or not relevant to the project in a meaningful way.

Whether or not the project wants to develop a fix is up to the goals and needs

of the project.

Code Quality

The issue identified does not pose any obvious risk, but fixing it would

improve overall code quality, conform to recommended best practices, and

perhaps lead to fewer development issues in the future.

Informational
Warnings and things to keep in mind when operating the protocol. No

immediate action required.

Gas

Optimizations

The presented optimization suggestion would save an amount of gas

significant enough, in our opinion, to be worth the development cost of

implementing it.

https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 9/48

Issue Details

H-1 Rewards distribution not working due to incorrect utilization boost factor

TOPIC

Spec

STATUS

Fixed

IMPACT

High

LIKELIHOOD

High

Rewards for registered Harvesters are calculated in proportion to their shares. Harvester share is

determined by three factors: harvesterTotalBoost , corruptionNegativeBoost and utilBoost .

function getHarvesterEmissionsShare(address _harvester) public view returns (uin
 uint256 harvesterTotalBoost = IHarvester(_harvester).nftHandler().getHarvest
 uint256 utilBoost = getUtilizationBoost(_harvester);

 uint256 corruptionNegativeBoost = getCorruptionNegativeBoost(_harvester);

 return harvesterTotalBoost * utilBoost / Constant.ONE * corruptionNegativeBo
}

Rewards distribution requires that all three factors are correct. In section 2.3.4 of the specification,

utilization is defined as “the ratio between the amount of deposited MAGIC in a particular harvester over

the total deposit capacity for that harvester.” Reaching specified levels by this ratio determines utilization

boost factor.

However, current implementation calculates utilization in the following way:

f nction getUtili ation(address har ester) p blic ie ret rns (int256 til) {

https://github.com/ghoul-sol/treasure-staking/commit/badafec7f5b4c856c13319d405f7d43a49ed0319
https://docs.google.com/document/d/1M8v43zpGTIQ2_sBI_Ffkbt7Ajfk0fnuuK44hdT2h3Wg/edit#heading=h.ownagtxzw5j
https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 10/48

function getUtilization(address _harvester) public view returns (uint256 util) {
 IERC20 magic = harvesterFactory.magic();

 uint256 circulatingSupply = magic.totalSupply();

 uint256 magicTotalDeposits = IHarvester(_harvester).magicTotalDeposits();

 uint256 len = excludedAddresses.length();

 for (uint256 i = 0; i < len; i++) {

 circulatingSupply -= magic.balanceOf(excludedAddresses.at(i));

 }

 uint256 rewardsAmount = magic.balanceOf(_harvester) - magicTotalDeposits;

 circulatingSupply -= rewardsAmount;

 if (circulatingSupply != 0) {

 util = magicTotalDeposits * Constant.ONE / circulatingSupply;

 }

}

This implementation is incorrect because it is based on circulatingSupply , which represents total

MAGIC token supply minus some of the token balances of well-known system contracts (e.g., the Treasury

and Ecosystem Fund). Considering the fact that total MAGIC token supply is much larger than total deposit

capacity for individual harvesters, utilization boost factor for all harvesters will always be 0. As a result,

harvesters will not be able to claim their reward, while emitted rewards will be stuck in the Middleman

contract.

Consider updating the getUtilization function to properly follow the specification for calculating

utilization boost factor, which is dependent only on the amount of deposited magic and total deposit

capacity for the particular harvester.

H-2 Boost factors are incorrectly combined

TOPIC

Spec

STATUS

Fixed

IMPACT

High

LIKELIHOOD

High

https://etherscan.io/token/0xB0c7a3Ba49C7a6EaBa6cD4a96C55a1391070Ac9A
https://github.com/ghoul-sol/treasure-staking/commit/
https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 11/48

Section 2.3 of the Specification defines how the boosted deposit amount is calculated when boost factors

are present.

UserBoostedDepositA = MagicDeposit * (1 + TimelockBoost + LegionsBoost + Treasur

Moreover, the specification says the following:

However, the Harvester.sol implementation does not follow the specification, and boost factors are

combined in an entirely different way. In Harvester.sol, within the deposit function, lock boost is applied

in a multiplicative way:

uint256 lockLpAmount = _amount + _amount * lockBoost / ONE;

This lockLpAmount is then provided as an arg to the _recalculateGlobalLp function:

_recalculateGlobalLp(msg.sender, _amount.toInt256(), lockLpAmount.toInt256());

In _recalculateGlobalLp , userNftBoost is also applied in a multiplicative way that, when simplified, looks

like lockLpAmount = lockLpAmount + lockLpAmount * userNftBoost . See line 5 below:

function _recalculateGlobalLp(address _user, int256 _amount, int256 _lockLpAmoun
 GlobalUserDeposit storage userGlobalDeposit = getUserGlobalDeposit[_user];

 uint256 nftBoost = nftHandler.getUserBoost(_user);

uint256 newGlobalLockLpAmount = (userGlobalDeposit globalLockLpAmount toInt2

Deposit Boosts for NFTs are additive, not multiplicative. For example, a user with 100 MAGIC staked

for 2 weeks, plus 2x Genesis All Class and 3x Honeycombs, would have:

Base Deposit Boost of 1x

Additive modifiers of (10%) + (2 x 200%) + (3 x 15.78%)

Total Deposit Boost of 1 * (1 + 0.1 + 4 + 0.4734) = 5.573

https://docs.google.com/document/d/1M8v43zpGTIQ2_sBI_Ffkbt7Ajfk0fnuuK44hdT2h3Wg/edit#
https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 12/48

 uint256 newGlobalLockLpAmount = (userGlobalDeposit.globalLockLpAmount.toInt2
-> uint256 newGlobalLpAmount = newGlobalLockLpAmount + newGlobalLockLpAmount *
 int256 globalLpDiff = newGlobalLpAmount.toInt256() - userGlobalDeposit.globa

 userGlobalDeposit.globalDepositAmount = (userGlobalDeposit.globalDepositAmou
 userGlobalDeposit.globalLockLpAmount = newGlobalLockLpAmount;

 userGlobalDeposit.globalLpAmount = newGlobalLpAmount;

 userGlobalDeposit.globalRewardDebt += globalLpDiff * accMagicPerShare.toInt2

 totalLpToken = (totalLpToken.toInt256() + globalLpDiff).toUint256();

 int256 accumulatedMagic = (newGlobalLpAmount * accMagicPerShare / ONE).toInt
 pendingRewards = (accumulatedMagic - userGlobalDeposit.globalRewardDebt).toU
}

Overall, boost factors are combined in Harvester.sol according to the following formula, which — as you

may notice — is different from the one defined in the specification:

UserBoostedDepositA = MagicDeposit * (1 + LockBoost) * (1 + NftBoost)

As a result, the system exhibits incorrect behavior.

Consider updating the Harvester implementation to properly follow the specification. Boost factors must

be summed up before they are applied to the deposited amount. Changes are required in at least the

deposit and _recalculateGlobalLp functions.

RESPONSE BY TREASURE DAO:

H-3 Harvesters with TreasureStakingRules configured cannot receive rewards

The specification was updated to match the implementation behavior.

https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 13/48

TOPIC

Spec

STATUS

Fixed

IMPACT

High

LIKELIHOOD

High

TreasureStakingRules support only user boost; they do not support harvester boost. Therefore, when

TreasureStakingRules are present on a particular harvester (alone or combined with other staking rules),

the harvester boost factor, originating from TreasureStakingRules, should not affect total harvester boost.

The boost should be 1, or any other outcome resulting from multiplying harvester boost factors that

originate from other staking rules.

However, the following TreasureStakingRules implementation of the getHarvesterBoost function is

incorrect:

function getHarvesterBoost() external pure returns (uint256) {

 // Treasure staking only boosts userBoost, not harvesterBoost

 return 0;

}

A harvester boost factor of 0, originating from TreasureStakingRules, affects total harvester boost

calculation in the NftHandler function getHarvesterTotalBoost . The result: a total harvester boost of 0

whenever TreasureStakingRules is present. Consequently, this prevents a distribution of rewards given to

the particular harvester.

function getHarvesterTotalBoost() public view returns (uint256 boost) {

 boost = Constant.ONE;

 for (uint256 i = 0; i < allAllowedNfts.length(); i++) {

 address _nft = allAllowedNfts.at(i);

 IStakingRules stakingRules = allowedNfts[_nft].stakingRules;

 if (address(stakingRules) != address(0)) {

 boost = boost * stakingRules.getHarvesterBoost() / Constant.ONE;

 }

https://github.com/ghoul-sol/treasure-staking/commit/8a1385be7a66283e741f720a62fd9d582171151a
https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 14/48

 }

}

Consider updating the getHarvesterBoost function within TreasureStakingRules to the following

implementation:

function getHarvesterBoost() external pure returns (uint256) {

 // Treasure staking only boosts userBoost, not harvesterBoost

 return Constant.ONE;

}

H-4 Unfair reward distribution between harvesters due to missed checkpoints in

the case of NFTs

TOPIC

Protocol Design

STATUS

Fixed

IMPACT

High

LIKELIHOOD

High

Rewards are collected as a payment stream from MasterOfCoin to MiddleMan and then distributed

between Harvesters and AtlastMine , based on emission share. Whenever an action is made (deposit,

withdraw, harvestAll), a call is made to Middleman ; which calls MasterOfCoin and requests rewards

until that time. These rewards are then distributed across harvesters on basis of their emission shares.

This emission share is calculated as:

Harvester Mining Power = Parts * Legions * Extractors * Utilisation * Corruption

Harvester Emission Share = Harvester Mining Power /

Sum (Harvester Mining Power (i)) + Atlas Mining Power

https://github.com/ghoul-sol/treasure-staking/commit/11e2edfd603b8d5b02e257534f0be87e2572081d
https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 15/48

Now, whenever this mining power changes, one should update the accounting (until that point) to keep fair

distribution. This is being done for utilization (deposit, withdraw) but not for Parts , Legions ,

Extractors and Corruption .

However, if an NFT is staked or unstaked, it is not being checkpointed. stakeNFT triggers

updateNFTBoost (of harvester), which calls _recalculateGlobalLp , which checkpoints for user rewards

inside harvester; but, as updateReward is not called, the reward is not checkpointed for harvesters. This

results in unfair reward distribution.

Consider adding updateReward modifier to updateNftBoost, of the harvester, as it's done for deposits and

withdrawals.

M-1 Rewards distribution incorrect in presence of disabled harvesters

TOPIC

Protocol Design

STATUS

Fixed

IMPACT

Medium

LIKELIHOOD

Low

In Middleman.sol, rewards for harvesters are calculated proportionally to the individual harvester share of

the total share.

To calculate each harvester’s share, in getHarvesterShares , the system iterates through all of the

harvesters registered in HarvesterFactory.

function getHarvesterShares(address _targetHarvester) public view returns (

 address[] memory allHarvesters,

 uint256[] memory harvesterShare,

 uint256 totalShare,

 uint256 targetIndex

) {
 allHarvesters = harvesterFactory.getAllHarvesters();

https://github.com/ghoul-sol/treasure-staking/commit/adaa2d9b49f4ae7b4ecf7ea58d6882f15c1ee487
https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 16/48

 harvesterShare = new uint256[](allHarvesters.length);

 for (uint256 i = 0; i < allHarvesters.length; i++) {

 harvesterShare[i] = getHarvesterEmissionsShare(allHarvesters[i]);

 totalShare += harvesterShare[i];

 if (allHarvesters[i] == _targetHarvester) {

 targetIndex = i;

 }

 }

 if (atlasMine != address(0) && atlasMineBoost != 0) {

 totalShare += atlasMineBoost;

 }

}

In addition to providing details about all harvesters, HarvesterFactory offers capability to enable/disable an

individual harvester.

function enableHarvester(IHarvester _harvester) external onlyRole(HF_DEPLOYER) {
 _harvester.enable();

}

function disableHarvester(IHarvester _harvester) external onlyRole(HF_DEPLOYER)
 _harvester.disable();

}

It does this using corresponding functions in Harvester.sol.

function enable() external onlyFactory {

 disabled = false;

 emit Enable();

}

function disable() external onlyFactory {

 disabled = true;

 emit Disable();

}

https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 17/48

According to Treasure DAO, this capability is meant to enable specific game mechanics:

However, Middleman.sol’s rewards calculation includes enabled and disabled harvesters. As a result, the

rewards of enabled harvesters will be smaller than expected in the presence of disabled harvesters — the

extent of how much smaller depends on the proportional amount of harvester shares associated with the

disabled harvesters that should have been excluded from consideration.

Consider filtering out disabled harvesters in the process of rewards calculation at Middleman.sol or

HarvesterFactory.

M-2 Unclaimed rewards for disabled harvester stuck in Middleman

TOPIC

Protocol Design

STATUS

Fixed

IMPACT

Medium

LIKELIHOOD

Low

In Middleman.sol, rewards calculation is triggered by an external call to the distributeRewards function.

As part of this process, rewards accrue for each registered harvester within Middleman. Rewards are

transferred, or pulled, to the individual harvester on request (more precisely, by the individual harvester

calling Middleman#requestRewards). If this call is not triggered for a long period of time, one can expect a

potentially significant amount of accrued rewards — meant for particular harvester — to become stored in

Middleman. As part of the regular system operation, anyone can trigger deposit , harvestAll , or

withdrawPosition to pull rewards from Middleman to Harvester.

We are looking to allow Guilds to fight over a Harvester in a game, and then have the outcome of the

game disable the yield to the old harvester if the defending team loses, while we deploy a new

Harvester for the winning guild.

https://github.com/ghoul-sol/treasure-staking/commit/ecf260c129f06f17b6093a3bb364ccb32d70f7be
https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 18/48

However, when Harvester is disabled, it is impossible to pull previously accrued rewards from Middleman

to individual Harvester because calls to it are guarded by the !disabled condition within the

updateRewards modifier. As a result, users/depositors of the particular harvester will be negatively

affected because their share of earned rewards will be stuck in the Middleman contract.

modifier updateRewards() {

 uint256 lpSupply = totalLpToken;

 if (lpSupply > 0 && !disabled) {

 uint256 distributedRewards = factory.middleman().requestRewards();

 totalRewardsEarned += distributedRewards;

 accMagicPerShare += distributedRewards * ONE / lpSupply;

 emit LogUpdateRewards(distributedRewards, lpSupply, accMagicPerShare);

 }

 _;

}

Consider updating updateRewards and pendingRewardsAll to remove the !disabled condition guard

so that users can pull previously earned rewards from Middleman, even if their harvester is disabled.

M-3 Use of setExtractorAddress can break Extractor staking

TOPIC

Use Cases

STATUS

Fixed

IMPACT

Medium

LIKELIHOOD

Low

In ExtractorStakingRules, setExtractorAddress is a privileged function that enables admin to change the

address of the ERC1155 contract, which manages tokens that are eligible to be used as Extractor tokens.

ExtractorStakingRules implementation has maxStakeable spots per NftConfig enabled within particular

harvester. When these spots are filled and individual extractor tokens — which are staked — expire, the

https://github.com/ghoul-sol/treasure-staking/commit/487ddb4dac7a8e941d9c0109ea7088571964758a
https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 19/48

staked tokens can be replaced with new Extractor tokens, through the replaceExtractor function of

NftHandler.

The replaceExtractor function, as part of its implementation, contains the following code, which

performs core processing:

(

 address user,

 uint256 replacedTokenId,

 uint256 replacedAmount

) = stakingRules.canReplace(msg.sender, _nft, _tokenId, _amount, _replacedSpotId

IERC1155(_nft).safeTransferFrom(msg.sender, address(this), _tokenId, _amount, by
ERC1155Burnable(_nft).burn(address(this), replacedTokenId, replacedAmount);

stakedNfts[user][_nft][replacedTokenId] -= replacedAmount;

stakedNfts[msg.sender][_nft][_tokenId] += _amount;

In normal circumstances, the system operates properly. However, when setExtractorAddress is invoked,

it changes the ERC1155 contract address for acceptable tokens. And, when replaceExtractor is called with

a new _nft contract address, the following results occur:

canReplace executes successfully.

IERC1155(_nft).safeTransferFrom executes successfully.

ERC1155Burnable(_nft).burn , referencing the incorrect _nft contract, fails or — even worse —

destroys the incorrect token from the new NFT contract address.

Additionally, if the previous line executes without any errors, the following line may also cause revert,

since the left side will evaluate to 0, resulting in an underflow error:

stakedNfts[user][_nft][replacedTokenId] -= replacedAmount;

https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 20/48

Due to the unexpected system behavior above, token replacements on the particular ExtractorStakingRules

instance will not function properly or work at all.

Consider:

removing the privileged method, such as setExtractorAddress , or

updating the replaceExtractor function to handle this edge case properly.

M-4 LegionStakingRules parameter changes result in accounting discrepancies

TOPIC

Use Cases

STATUS

Fixed

IMPACT

Medium

LIKELIHOOD

Medium

In LegionStakingRules, legionBoostMatrix , legionRankMatrix and legionWeightMatrix are runtime

configurable variables. These matrixes of parameters affect user boost factor, harvester boost factor (total

rank) and per user level constraint (weightStaked).

function getUserBoost(address, address, uint256 _tokenId, uint256) external view
 ILegionMetadataStore.LegionMetadata memory metadata = legionMetadataStore.me

 return getLegionBoost(uint256(metadata.legionGeneration), uint256(metadata.l
}

function getLegionBoost(uint256 _legionGeneration, uint256 _legionRarity) public
 if (_legionGeneration < legionBoostMatrix.length && _legionRarity < legionBo
 return legionBoostMatrix[_legionGeneration][_legionRarity];

 }

 return 0;

}

https://github.com/ghoul-sol/treasure-staking/commit/c8841f998cfa6b51a7e0f573434cb4dc33be6e37
https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 21/48

In NftHandler, getNftBoost wraps call to getUserBoost on associated LegionStakingRules instance.

function getNftBoost(address _user, address _nft, uint256 _tokenId, uint256 _amo
 IStakingRules stakingRules = allowedNfts[_nft].stakingRules;

 if (address(stakingRules) != address(0)) {

 boost = stakingRules.getUserBoost(_user, _nft, _tokenId, _amount);

 }

}

In NftHandler, when user stakes an NFT token associated with LegionStakingRules, within canStake

function system increments getUserBoost accumulator.

getUserBoost[msg.sender] += getNftBoost(msg.sender, _nft, _tokenId, _amount);

harvester.updateNftBoost(msg.sender);

Also, in the canUnstake function, the system correspondingly decrements the getUserBoost accumulator:

getUserBoost[msg.sender] -= getNftBoost(msg.sender, _nft, _tokenId, _amount);

harvester.updateNftBoost(msg.sender);

Notice that when getNftBoost has deterministic result for particular token, stakeNft followed by

unstakeNft will result getUserBoost[msg.sender] having initial value of 0. And that is what the

implementation implicitly assumes.

However, as previously described LegionStakingRules parameters are changeable. Therefore following two

cases are also possible:

https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 22/48

1. User does not have staked Legion NFTs but has userBoost
In stakeNft boost is N

LegionStakingRules are updated so boost for particular token is reduced

In unstakeNft boost is N-1

getUserBoost[msg.sender] is 1, while user doesn’t have staked NFTs

2. User cannot unstake previously staked Legion

In stakeNft boost is N

LegionStakingRules are updated so boost for particular token is increased

In unstakeNft boost is N+1

Following line reverts with underflow

getUserBoost[msg.sender] -= getNftBoost(msg.sender, _nft, _tokenId, _amount);

Similar edge cases and associated issues are also possible in LegionStakingRules _canStake and

_canUnstake functions with regards to totalRank and weightStaked .

function _canStake(address _user, address, uint256 _tokenId, uint256) internal o
 staked++;

 totalRank += getRank(_tokenId);

 weightStaked[_user] += getWeight(_tokenId);

 if (weightStaked[_user] > maxLegionWeight) revert("MaxWeight()");

}

function _canUnstake(address _user, address, uint256 _tokenId, uint256) internal
 staked--;

 totalRank -= getRank(_tokenId);

 weightStaked[_user] -= getWeight(_tokenId);

}

Consider removing capability for changing LegionStakingRules parameters.

M-5 Disabling the existing NftConfig leads to stuck NFTs

https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 23/48

TOPIC

Use Cases

STATUS

Fixed

IMPACT

Medium

LIKELIHOOD

Medium

In NftHandler, setNftConfig is a privileged action that allows admin to disable particular NftConfig:

function _setNftConfig(address _nft, NftConfig memory _nftConfig) internal {

 if (address(_nftConfig.stakingRules) != address(0)) {

 // it means we are adding _nft or updating its config

 // ignore return value in case we are just updating config

 allAllowedNfts.add(_nft);

 } else {

 if (!allAllowedNfts.remove(_nft)) revert("AlreadyDisallowed()");

 _nftConfig.supportedInterface = Interfaces.Unsupported;

 }

 allowedNfts[_nft] = _nftConfig;

 emit NftConfigSet(_nft, _nftConfig);

}

However, when that happens, users with staked NFTs will be left with no ability to unstake them. When

users attempt to unstake their NFTs, unstake method execution will result in a revert, with the message

NftNotAllowed() .

Consider updating the unstakeNft functionality to allow unstaking, even if a particular NFT contract is

not currently allowed — or remove the capability to disable NFT configs.

L-1 Unnecessary updateRewards executions and LogUpdateRewards event

emissions

TOPIC

Use Cases

STATUS

Fixed

IMPACT

Low

LIKELIHOOD

Medium

https://github.com/ghoul-sol/treasure-staking/commit/ece6c7516dc4cb266fa89c4bfa49cba280748860
https://github.com/ghoul-sol/treasure-staking/commit/3542a86c2f9a9070a05ccaa1b6cce302351aad74
https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 24/48

In Harvester.sol, the updateRewards modifier is called as part of the deposit , withdrawPosition , and

harvestAll functions. In this modifier, distributedRewards may be ≠ 0 only one time per block because of

middleman().requestRewards() . Currently, however, on each invocation, LogUpdateRewards event will

be emitted and additional calculations will be performed which is unnecessary.

modifier updateRewards() {

 uint256 lpSupply = totalLpToken;

 if (lpSupply > 0 && !disabled) {

 uint256 distributedRewards = factory.middleman().requestRewards();

 totalRewardsEarned += distributedRewards;

 accMagicPerShare += distributedRewards * ONE / lpSupply;

 emit LogUpdateRewards(distributedRewards, lpSupply, accMagicPerShare);

 }

 _;

}

Consider adding a guard and performing corresponding actions only if distributedRewards ≠ 0.

L-2 unstakeNft uses transferFrom instead of safeTransferFrom

TOPIC

Coding Standards

STATUS

Fixed

IMPACT

Low

LIKELIHOOD

Low

In NftHandler.sol, within the unstakeNft function, token is transferred to msg.sender in the following way

(which does not perform a check if the receiver can handle the ERC721 token, in case it is a contract, not an

EOA):

IERC721(_nft).transferFrom(address(this), msg.sender, _tokenId);

https://github.com/ghoul-sol/treasure-staking/commit/7816567b67c8b0338a19c203cfeffede1d99fe67
https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 25/48

Consider updating this to the IERC721#safeTransferFrom function call, similar to the IERC1155 call

present in the function code immediately after.

L-3 Particular order of operations leads to deposit positions that cannot be

properly cleaned up

TOPIC

Use Cases

STATUS

Fixed

IMPACT

Low

LIKELIHOOD

Low

In Harvester.sol, the withdrawPosition function calls another function to remove deposit position entry.

Call is guarded by a condition that requires associated deposit and pending rewards to be withdrawn

already (i.e., 0).

if (user.depositAmount == 0 && user.lockLpAmount == 0 && pendingRewards == 0) {

 _removeDeposit(msg.sender, _depositId);

}

However, if withdrawPosition/withdrawAll is called first, with pendingRewards still present for the

particular user, _removeDeposit will not be executed because this guard condition will evaluate to be

false.

In addition, on each followup attempt to call withdrawPosition , this code would not be reachable. The

only case when the _removeDeposit function is executed is when harvestAll is called before

withdrawPosition , since the harvestAll execution would result in pendingRewards being 0.

This may result in a continuous increase of the number of records in the allUserDepositIds variable.

Consequently, functions that iterate through allUserDepositIds, such as withdrawAll and

https://github.com/ghoul-sol/treasure-staking/commit/ff1c36ce5c9fc48bc7cf934d5e5f2cdd18f8566a
https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 26/48

withdrawAndHarvestAll , may not be executable due to their large gas cost requirements.

Consider:

implement cleanup functionality also in harvestAll , or

prevent direct calls to withdrawPosition/withdrawAll so that it can be invoked only after

harvestAll .

RESPONSE BY TREASURE DAO:

L-4 Harvester#getDepositTotalBoost calculation is incorrect

TOPIC

Spec

STATUS

Fixed

IMPACT

Low

LIKELIHOOD

Low

In Harvester.sol, getDepositTotalBoost is implemented in the following way:

function getDepositTotalBoost(address _user, uint256 _depositId) external view r
 (uint256 lockBoost,) = getLockBoost(userInfo[_user][_depositId].lock);

 uint256 userNftBoost = nftHandler.getUserBoost(_user);

 // see: `_recalculateGlobalLp`.

 // `userNftBoost` multiplies lp amount that already has `lockBoost` added

 // that's why we have to add `lockBoost * userNftBoost / ONE` for correct re
 return lockBoost + userNftBoost + lockBoost * userNftBoost / ONE;

}

However, the boosted deposit amount calculation, as defined in section 2.3 of the specification, is:

Pending rewards check was a leftover from the previous implementation.

https://github.com/ghoul-sol/treasure-staking/commit/8ca3622a56e8571923ea1cd3d5b78cb990a766f9
https://docs.google.com/document/d/1M8v43zpGTIQ2_sBI_Ffkbt7Ajfk0fnuuK44hdT2h3Wg/edit#heading=h.pl1t9y3y5kzu
https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 27/48

UserBoostedDepositA = MagicDeposit * (1 + TimelockBoost + LegionsBoost + Treasur

Therefore, consider updating the final expression in getDepositTotalBoost to the following:

return 1 + lockBoost + userNftBoost

L-5 NftHandler should inherit from ERC721HolderUpgradeable

TOPIC

Coding Standards

STATUS

Fixed

IMPACT

Low

LIKELIHOOD

Low

NftHandler manages both ERC721 and ERC1155 tokens. Also, NftHandler properly advertises ERC1155

support by inheriting the ERC1155HolderUpgradeable contract. However, it does not do the same for

ERC721. Thus, third party smart contracts, such as smart wallets, may be unable to transfer ERC721 tokens to

the NftHandler contract because of built-in checks, which require NftHandler to properly advertise ERC721

token support.

Consider updating NftHandler to also inherit from ERC721HolderUpgradeable . Corresponding changes

are also necessary in both NftHandler#init and NftHandler#supportsInterface functions.

L-6 Reward distribution between harvesters is not checkpointed in the case of

privileged actions.

TOPIC

Protocol Design

STATUS

Fixed

IMPACT

Low

LIKELIHOOD

Medium

https://github.com/ghoul-sol/treasure-staking/commit/7816567b67c8b0338a19c203cfeffede1d99fe67
https://github.com/ghoul-sol/treasure-staking/commit/32bb01d058121762f574e2830e2e42a0a0f9b142
https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 28/48

Protocol Design Fixed Low Medium

Rewards between harvesters are decided based on emission shares, which is calculated from various boosts.

Harvester Mining Power = Parts * Legions * Extractors * Utilisation * Corruption

Harvester Emission Share = Harvester Mining Power /

Sum (Harvester Mining Power (i)) + Atlas Mining Power

Following boost factors are updatable for an admin.

Drip corruption tokens to the particular harvester.

Update ExtractorStakingRules parameters (such as a lifetime and token boost factor) through

setExtractorLifetime and setExtractorBoost .

Update LegionStakingRules parameters through setLegionBoostMatrix ,

setLegionWeightMatrix , setLegionRankMatrix , setBoostFactor .

Update PartsStakingRules parameters (such as a boost factor) through setBoostFactor .

The preceding updates change emission shares for harvesters. However, if distributeRewards is not

called before these admin actions, the middle checkpoint is missed. As a result system exhibits an unfair

reward distribution behavior.

Consider making the call to distributeRewards mandatory before doing these admin actions.

L-7 Depending on maxStakable, methods of ExtractorStakingRules can go out of

gas

TOPIC STATUS IMPACT LIKELIHOOD

https://github.com/ghoul-sol/treasure-staking/commit/32bb01d058121762f574e2830e2e42a0a0f9b142
https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 29/48

Use Cases Fixed Medium Low

The following loop is executed for each extractor whenever an extractor is staked:

_canStake(address _user, address _nft, uint256 _tokenId, uint256 _amount) =>

 for (uint256 i = 0; i < _amount; i++) {

 uint256 spotId = extractorCount.current();

 stakedExtractor[spotId] = ExtractorData(_user, _tokenId, block.timestamp
 extractorCount.increment();

 }

More importantly, whenever totalBoost is calculated for each harvester in

Middleman#distributeRewards , the following loop is executed for each extractor within each harvester:

function getExtractorsTotalBoost() public view returns (uint256 totalBoost) {

 for (uint256 i = 0; i < extractorCount.current(); i++) {

 if (isExtractorActive(i)) {

 totalBoost += extractorBoost[stakedExtractor[i].tokenId];

 }

 }

}

This loop is redundant and may go above the gas limit, depending on the maxStakable value.

Middleman#distributeRewards is a core system function that must be executed at least once per block;

this function iterates through all staked extractor spots as part of an underlying execution. If the number of

staked extractor spots becomes large enough, the system may not operate properly because executing

Middleman#distributeRewards will be expensive to run or may halt due to an out-of-gas error.

Consider the following options to resolve this:

1. Define acceptable input range for the _maxStakeable parameter and add corresponding guards.

https://github.com/ghoul-sol/treasure-staking/commit/b13eb800b92d834e7250fa7b9b1546f0b1dcb70c
https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 30/48

2. Update the logic for ExtractorsStakingRules so that it aggregates on stake and replace.

3. Remove the functionality that allows the _maxStakeable parameter to be changed.

Q-1 Call to parent initializers should be executed with the highest priority

TOPIC

Code Quality

STATUS

Fixed

IMPACT

Low

In NftHandler.sol’s init (and similarly in Harvester.sol’s), the method calls to parent initializers

__AccessControlEnumerable_init() and __ERC1155Holder_init() , which are placed at the end of the

method after role operations have already been performed. This may have resulted in an invalid setup.

For this particular case, it is not a cause of concern because parent initializers are calls with no changes.

However, to avoid issues in similar situations — ones with initializers that do perform their own setup — it

is recommended to follow best practices and put initializers at the top of the init function.

Consider updating the function to the following:

function init(

 address _admin,

 address _harvester,

 address[] memory _nfts,

 INftHandler.NftConfig[] memory _nftConfigs

) external initializer {

 __AccessControlEnumerable_init();

 __ERC1155Holder_init();

 _setRoleAdmin(NH_ADMIN, NH_ADMIN);

 _grantRole(NH_ADMIN, _admin);

 harvester = IHarvester(_harvester);

 if (_nfts.length != _nftConfigs.length) revert("InvalidData()");

https://github.com/ghoul-sol/treasure-staking/commit/25348a3a02a7b3a28511f6b5e694ea7fb84647c0
https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 31/48

 for (uint256 i = 0; i < _nfts.length; i++) {

 _setNftConfig(_nfts[i], _nftConfigs[i]);

 }

 }

Q-2 Unnecessary code duplication

TOPIC

Code Quality

STATUS

Fixed

IMPACT

Low

In Harvester.sol, the withdrawAndHarvestAll function has redundant code which is already implemented

in the withdrawAll function.

function withdrawAndHarvestAll() public {

 harvestAll();

 // replace following with call to withdrawAll()

 uint256[] memory depositIds = allUserDepositIds[msg.sender].values();

 for (uint256 i = 0; i < depositIds.length; i++) {

 withdrawPosition(depositIds[i], type(uint256).max);

 }

}

Q-3 Important Harvester methods not defined in IHarvester interface

TOPIC

Code Quality

STATUS

Wont Do

IMPACT

Low

Following is the list of the methods missing in IHarvester interface

https://github.com/ghoul-sol/treasure-staking/commit/a9527afffb452aa4544e56b5dd19c01bbb2bd07f
https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 32/48

deposit

withdrawPosition

withdrawAll

harvestAll

withdrawAndHarvestPosition

withdrawAndHarvestAll

getTimelockOptionIds

getUserBoost

getDepositTotalBoost

getNftBoost

getAllUserDepositIds, getAllUserDepositIdsLength

getUserDepositCap

getLockBoost, getVestingTime

pendingRewardsAll

calcualteVestedPrincipal

setNftHandler, setDepositCapPerWallet, setTotalDepositCap

addTimelockOption, enableTimelockOption, disableTimelockOption

setUnlockAll

Consider declaring all external and public functions (including public variables) in the corresponding

interface with proper Natspec comments. Check other interfaces and make sure they declare all

public/external methods for corresponding contracts.

Q-4 Move event declarations from contract implementations to interfaces

https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 33/48

TOPIC

Code Quality

STATUS

Wont Do

IMPACT

Low

Events are part of contract interface rather than implementation. Consider moving all event declarations to

corresponding interfaces. Document all declarations with corresponding Natspec comments. This applies

to:

Harvester

NftHandler

PartsStakingRules

ExtractorStakingRules

LegionStakingRules

TreasureStakingRules

Q-5 Implement corresponding interfaces for all StakingRules

TOPIC

Code Quality

STATUS

Wont Do

IMPACT

Low

ExtractorStakingRules has the IExtractorStakingRules interface, which defines custom

functionality. PartsStakingRules , LegionStakingRules , and TreasureStakingRules also contain

custom functionality, but do not have their own corresponding interfaces.

Consider implementing interfaces for all contracts that inherit StakingRulesBase and define all public

and external functions/variables.

https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 34/48

Q-6 Remove unnecessary code

TOPIC

Code Quality

STATUS

Fixed

IMPACT

Low

user.vestingLastUpdate is not used at all.

Consider removing it along with other related, redundant code, such as _vestedPrincipal function.

Q-7 Avoid using modifiers when they are applied only once

TOPIC

Code Quality

STATUS

Wont Do

IMPACT

Low

Modifiers are helpful when they are used to ensure a particular check is enforced at various entry points.

However, when there is only a single-entry-point modifier, usage does not add value; on the contrary, it only

negatively affects code readability.

The following modifiers are used only once:

Middleman#runIfNeeded

NftHandler#canStake

NftHandler#canUnstake

Consider inlining them into corresponding functions to improve code readability.

https://github.com/ghoul-sol/treasure-staking/commit/268b85bab043ca06de98841c152b699267f19429
https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 35/48

Q-8 In NftHandler modifiers canStake and canUnstake should revert

TOPIC

Code Quality

STATUS

Fixed

IMPACT

Low

The modifiers NftHandler#canStake and NftHandle#canUnstake do not revert if the address of

stakingRules is 0. Execution continues within corresponding calling functions (stakeNft and

unstakeNft), despite having no purpose for doing that.

This implementation behavior, at the moment, does not lead to a particular security issue due to other

checks. However, consider updating the corresponding modifiers/functions to revert/return early, if

corresponding conditions are not satisfied, to avoid security issues in the future.

RESPONSE BY TREASURE DAO:

Q-9 Rename canStake and canUnstake in IStakingRules

TOPIC

Code Quality

STATUS

Fixed

IMPACT

Low

In IStakingRules, canStake and canUnstake external methods are declared. All child contracts with

various strategies for staking rules implement these two methods using strategy specific behavior for the

staking and unstaking of NFT assets.

canStake reverts when stakingRules are not set making it impossible to stake tokens without

proper configuration.

canUnstake does not revert so it's possible to unstake tokens when the configuration is missing.

https://github.com/ghoul-sol/treasure-staking/commit/25af42f4456e56e4cd7a13bed6d0fe350bc8facd
https://github.com/ghoul-sol/treasure-staking/commit/9d4e38cc51f18c515298ff054a1a5566d0deaa3a
https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 36/48

Currently, the natspec comment says that canStake - Checks if NFT can be staked (with a similar

comment for canUnstake). Additionally, the function name due to naming conventions, may lead readers

to incorrectly conclude that these two functions perform a set of checks, but do not update the state.

However, both of these methods update the contract-specific state.

Therefore, consider renaming these two methods to more properly represent their underlying behavior

(e.g., stake/unstake , doStake/doUnstake , processStake/processUnstake).

Q-10 Remove unused event declaration in the Harvester

TOPIC

Code Quality

STATUS

Fixed

IMPACT

Low

In the Harvester, the UndistributedRewardsWithdraw event is declared but never used:

event UndistributedRewardsWithdraw(address indexed to, uint256 amount);

Consider removing this event declaration.

Q-11 Unused _user argument in the NftHandler modifiers

TOPIC

Code Quality

STATUS

Fixed

IMPACT

Low

https://github.com/ghoul-sol/treasure-staking/commit/f930e3a0795d131f23b792c2f49198a3190e3c3c
https://github.com/ghoul-sol/treasure-staking/commit/8227c1642140a3404c60b79cc6039bd989418147
https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 37/48

In the NftHandler, the modifiers canStake and canUnstake have address _user argument, which is

not used.

Instead, msg.sender is used within these modifiers.

Consider updating the modifiers’ implementation by removing the _user argument or replacing the

reference to msg.sender with _user .

Q-12 Use the checks-effects-interactions pattern in stakeNft and unstakeNft

TOPIC

Code Quality

STATUS

Fixed

IMPACT

Low

In the NftHandler, the stakeNft and unstakeNft function implementations do not follow the checks-

effects-interactions pattern, nor do they feature re-entrancy guards. Currently, this does not result in

identified security issues.

However, the NftHandler is meant to be upgradable. Therefore, to avoid security issues being introduced in

the future, consider:

updating the implementation of these methods, to follow the checks-effects-interactions pattern, or

add re-entrancy protection mechanism, such as OZ's ReentrancyGuardUpgradeable.

Q-13 Split ERC721 and ERC1155 handling into separate internal functions

TOPIC

Code Quality

STATUS

Wont Do

IMPACT

Low

https://github.com/ghoul-sol/treasure-staking/commit/b72b685b291964134bd2de761862e62637fe7344
https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 38/48

Code Quality Wont Do Low

In the NftHandler, stakeNft and unstakeNft handle both ERC721 and ERC1155 assets within the same

function. Code duplication is minimized in this approach at the cost of a less readable code.

Consider updating these functions to split the handling and processing of ERC721 and ERC1155 assets into

different helper functions.

Q-14 Use established conventions for error reporting

TOPIC

Code Quality

STATUS

Fixed

IMPACT

Low

Error reporting within this project uses an unconventional approach — it reverts with a string message,

formatted in a way that resembles custom error.

// In ExtractorStakingRules.sol there is following which

// looks like custom errors but it is not

function _canUnstake(address, address, uint256, uint256) internal pure override
 revert("CannotUnstake()");

}

This is not the proper approach to generate custom errors. A previous code with the proper application of

Custom Errors, feature introduced in Solidity 0.8.4, would look like following:

error CannotUnstake();

function _canUnstake(address, address, uint256, uint256) internal pure override
 revert CannotUnstake();

}

https://github.com/ghoul-sol/treasure-staking/commit/8e472764073e2ab1096b70f45e659ce1ccd62868
https://blog.soliditylang.org/2021/04/21/custom-errors/
https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 39/48

}

Moreover, within codebase, different conventions for checks and error reporting are used. For example, in

the NftHandler#validateInput modifier, checks and error reporting are done in following way:

modifier validateInput(address _nft, uint256 _amount) {

 if (_nft == address(0)) revert("InvalidNftAddress()");

 if (_amount == 0) revert("NothingToStake()");

 _;

}

However, in the ExtractorStakingRules#validateInput modifier, checks and error reporting is

implemented differently:

modifier validateInput(address _nft, uint256 _amount) {

 require(_nft == extractorAddress, "InvalidAddress()");

 require(_amount > 0, "ZeroAmount()");

 _;

}

Consider choosing a single approach — we recommend one relying on custom errors — and applying it

consistently within the whole project.

Q-15 Avoid using function naming conventions for variables

TOPIC

Code Quality

STATUS

Wont Do

IMPACT

Low

https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 40/48

The following variables are named using function naming conventions:

Harvester#getUserGlobalDeposit

NftHandler#getUserBoost

PartsStakingRules#getAmountStaked

TreasureStakingRules#getAmountTreasuresStaked

Consider making these variables internal and implementing custom getters if particular function names are

desired.

Q-16 Use common base for all constants in LegionStakingRules

TOPIC

Code Quality

STATUS

Fixed

IMPACT

Low

In LegionStakingRules — within constructor legionWeightMatrix — values are defined with different bases.

Some values use e18 as a base, whereas others use e17.

legionWeightMatrix = [

 // GENESIS

 // LEGENDARY,RARE,SPECIAL,UNCOMMON,COMMON,RECRUIT

 [uint256(120e18), uint256(40e18), uint256(15e18), uint256(20e18), uint256(10
 // AUXILIARY

 // LEGENDARY,RARE,SPECIAL,UNCOMMON,COMMON,RECRUIT

 [illegalWeight, uint256(55e17), illegalWeight, uint256(4e18), uint256(25e17)
 // RECRUIT

 // LEGENDARY,RARE,SPECIAL,UNCOMMON,COMMON,RECRUIT

 [illegalWeight, illegalWeight, illegalWeight, illegalWeight, illegalWeight,
];

https://github.com/ghoul-sol/treasure-staking/commit/ab6566e811c20f9687b0b1d72d7d443ec255cb8c
https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 41/48

Consider updating the values so they use the same common base.

In addition, consider using a constant value for a base to avoid typos. Instead of:

[uint256(600e16), uint256(200e16), uint256(75e16), uint256(100e16), uint256(50e1

You may use the following approach:

// add constant

uint256 BASE_WEIGHT = 1e18;

[uint256(6 * BASE_WEIGHT), uint256(2 * BASE_WEIGHT), uint256(0.75 * BASE_WEIGHT)

Q-17 Improve code documentation

TOPIC

Code Quality

STATUS

Acknowledged

IMPACT

Low

While some parts of the audited project are documented using Natspec comments, the majority of the

project is missing them. Additionally, a better approach for handling documents through inheritance is only

applied within one part of the code; see IStakingRules.sol and StakingRulesBase.sol .

Consider updating the project code to include Natspec comments for all public-facing functions and

variables. Follow the same approach as the one already implemented in IStakingRules.sol and

StakingRulesBase.sol .

https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 42/48

The following list is an inconclusive set of variables and functions, which could use additional code

documentation:

IStakingRules

Natspec comment for IStakingRules#getUserBoost and StakingRules#getHarvesterBoost

should provide details related to the number precision of return values.

ExtractorStakingRules

Incorrect natspec for ExtractorStakingRules.extractorBoost, as it should be maps token Id ⇒ boost

value .

/// @dev maps address => token Id => boost value

mapping(uint256 => uint256) public extractorBoost;

Incorrect natspec for ExtractorStakingRules.extractorCount, as it should be similar to the following:

current number of extractor spots taken / next extractor spot

/// @dev lastest spot Id

Counters.Counter public extractorCount;

Missing natspec for the _user and _nft params for the IExtractorStakingRules.canReplace

method.

Missing natspec in ExtractorStakingRules for the following:

setMaxStakeable

setExtractorBoost

setExtractorAddress

setExtractorLifetime

isExtractorActive

getExtractorCount

getExtractors - partially

getExtractorsTotalBoost - partially

LegionStakingRules

all public variables

all events

all public methods

ILegionILegionMetadataStore

all functions

PartsStakingRules

all public variables

https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 43/48

all events

all admin external functions

HarvesterFactory

all public variables

all events

all public/external functions

NftHandler

all public variables

all events

all public/external functions

does not use /// @inheritdoc INftHandler for interface method implementations

Middleman

all public variables

all events

all public/external functions

IHarvester

all

Harvester

all public variables

all events

all public/external functions

TreasureStakingRules

all public variables

maxStakeablePerUser

getAmountTreasuresStaked

all events

MaxStakeablePerUser

all public/external functions

setMaxStakeablePerUser

getTreasureBoost

Q-18 Add user info to event parameters emitted by NftHandler

https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 44/48

TOPIC

Code Quality

STATUS

Fixed

IMPACT

Low

The NftHandler emits the following events, as part of execution in stakeNft , unstakeNft , and

replaceNft functions:

event Staked(address indexed nft, uint256 tokenId, uint256 amount);

event Unstaked(address indexed nft, uint256 tokenId, uint256 amount);

event Replaced(address indexed nft, uint256 tokenId, uint256 amount, uint256 rep

However, in each case, information about the user in relation to a particular action is missing.

Consider adding the new parameter address indexed user for the above events to facilitate off-chain

event indexing and monitoring.

G-1 Replace unnecessary calls to getNftBoost within NftHandler

TOPIC

Gas optimization

STATUS

Wont Do

IMPACT

Low

The following line is in stakeNft :

getUserBoost[msg.sender] += getNftBoost(msg.sender, _nft, _tokenId, _amount);

Correspondingly, the following line is in unstakeNft :

https://github.com/ghoul-sol/treasure-staking/commit/99de60a3d989e73d932519dd3e07e478ead6ffae
https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 45/48

getUserBoost[msg.sender] -= getNftBoost(msg.sender, _nft, _tokenId, _amount);

In NftHandler, getNftBoost is implemented:

function getNftBoost(address _user, address _nft, uint256 _tokenId, uint256 _amo
 IStakingRules stakingRules = allowedNfts[_nft].stakingRules;

 if (address(stakingRules) != address(0)) {

 boost = stakingRules.getUserBoost(_user, _nft, _tokenId, _amount);

 }

}

The only added value of the getNftBoost function is a guard check, in case stakingRules is not set.

However, at places where getNftBoost is called within stakeNft and unstakeNft , stakingRules cannot

be 0. Therefore, call getUserBoost on stakingRules directly, instead of through getNftBoost , to avoid

unnecessary checks.

For example:

// at the beginning of stakeNft or unstakeNft

IStakingRules stakingRules = allowedNfts[_nft].stakingRules;

// later

getUserBoost[msg.sender] += stakingRules.getUserBoost(msg.sender, _nft, _tokenId

G-2 totalRewardsEarned is tracked unnecessarily in updateRewards

TOPIC

G ti i ti

STATUS

W t D

IMPACT

L

https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 46/48

Gas optimization Wont Do Low

updateRewards is present in most call paths, so each save that is done in updateRewards matters. If the

purpose is for usability, one can derive totalRewardsEarned from the event LogUpdateRewards .

This optimizations saves 1 SSTORE per execution.

G-3 In calculateVestedPrincipal, consider removing unnecessary condition

TOPIC

Gas optimization

STATUS

Wont Do

IMPACT

Low

Following condition is always positive, therefore it may be removed.

 if (amountWithdrawn < amountVested) {

 amount = amountVested - amountWithdrawn;

 }

G-4 External calls can be avoided by storing details in the contract itself

TOPIC

Gas optimization

STATUS

Acknowledged

IMPACT

Low

For example, in the case of the Harvesters factory.middleman() and factory.magic() , consider

defining them in the original contract only if they are not going to be changed regularly.

https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 47/48

This optimizations saves 1 SLOAD and 1 CALL for each external call done in the path.

G-5 Consider not using the Counters library for extractorCount variable

TOPIC

Gas optimization

STATUS

Wont Do

IMPACT

Low

Consider implementing uint256 counter without external library. This is not a very significant optimization,

but it is redundant.

Disclaimer

Macro makes no warranties, either express, implied, statutory, or otherwise, with respect to the services or

deliverables provided in this report, and Macro specifically disclaims all implied warranties of

merchantability, fitness for a particular purpose, noninfringement and those arising from a course of

dealing, usage or trade with respect thereto, and all such warranties are hereby excluded to the fullest

extent permitted by law.

Macro will not be liable for any lost profits, business, contracts, revenue, goodwill, production, anticipated

savings, loss of data, or costs of procurement of substitute goods or services or for any claim or demand by

any other party. In no event will Macro be liable for consequential, incidental, special, indirect, or exemplary

damages arising out of this agreement or any work statement, however caused and (to the fullest extent

permitted by law) under any theory of liability (including negligence), even if Macro has been advised of the

possibility of such damages.

https://0xmacro.com/

9/6/22, 10:27 AM TreasureDAO A-1 | Macro Audits | The 0xMacro Library

https://0xmacro.com/library/audits/treasuredao-1 48/48

The scope of this report and review is limited to a review of only the code presented by the Emergent team

and only the source code Macro notes as being within the scope of Macro’s review within this report. This

report does not include an audit of the deployment scripts used to deploy the Solidity contracts in the

repository corresponding to this audit. Specifically, for the avoidance of doubt, this report does not

constitute investment advice, is not intended to be relied upon as investment advice, is not an

endorsement of this project or team, and it is not a guarantee as to the absolute security of the project. In

this report you may through hypertext or other computer links, gain access to websites operated by

persons other than Macro. Such hyperlinks are provided for your reference and convenience only, and are

the exclusive responsibility of such websites’ owners. You agree that Macro is not responsible for the

content or operation of such websites, and that Macro shall have no liability to your or any other person or

entity for the use of third party websites. Macro assumes no responsibility for the use of third party

software and shall have no liability whatsoever to any person or entity for the accuracy or completeness of

any outcome generated by such software.

https://0xmacro.com/

