
March 22nd 2022 — Quantstamp Verified

TreasureDAO

This audit report was prepared by Quantstamp, the leader in blockchain security.

Executive Summary

Type Ethereum

Auditors Hisham Galal, Research Engineer

Roman Rohleder, Research Engineer

Fayçal Lalidji, Senior Security Engineer

Timeline 2022-03-14 through 2022-04-27

EVM Arrow Glacier

Languages Solidity

Methods Architecture Review, Unit Testing, Functional

Testing, Computer-Aided Verification, Manual

Review

Specification None

Documentation Quality High

Test Quality High

Source Code
Repository Commit

treasure-staking b0d1576

treasure-marketplace c731073

Total Issues 15 (9 Resolved)

High Risk Issues 2 (2 Resolved)

Medium Risk Issues 4 (2 Resolved)

Low Risk Issues 6 (3 Resolved)

Informational Risk Issues 2 (1 Resolved)

Undetermined Risk Issues 1 (1 Resolved)

High Risk The issue puts a large number of users’
sensitive information at risk, or is
reasonably likely to lead to catastrophic
impact for client’s reputation or serious
financial implications for client and
users.

Medium Risk The issue puts a subset of users’
sensitive information at risk, would be
detrimental for the client’s reputation if
exploited, or is reasonably likely to lead
to moderate financial impact.

Low Risk The risk is relatively small and could not
be exploited on a recurring basis, or is a
risk that the client has indicated is low-
impact in view of the client’s business
circumstances.

Informational The issue does not post an immediate
risk, but is relevant to security best
practices or Defence in Depth.

Undetermined The impact of the issue is uncertain.

Unresolved Acknowledged the existence of the risk,
and decided to accept it without
engaging in special efforts to control it.

Acknowledged The issue remains in the code but is a
result of an intentional business or
design decision. As such, it is supposed
to be addressed outside the
programmatic means, such as: 1)
comments, documentation, README,
FAQ; 2) business processes; 3) analyses
showing that the issue shall have no
negative consequences in practice
(e.g., gas analysis, deployment
settings).

Resolved Adjusted program implementation,
requirements or constraints to eliminate
the risk.

Mitigated Implemented actions to minimize the
impact or likelihood of the risk.

https://github.com/ghoul-sol/treasure-staking
https://github.com/ghoul-sol/treasure-staking/tree/b0d157694636dd11e00799d340fb19eabf6d8081
https://github.com/ghoul-sol/treasure-marketplace
https://github.com/TreasureProject/treasure-marketplace-contracts/tree/c73107346aa941bf3131cad68078cf3654f8c5c4

Summary of Findings

We have reviewed TreasureDAO contracts. Issues ranging across all severity levels have been found, therefore we strongly suggest

reviewing all findings before using the code in production. The test suite and specifications were of high quality.

Marketplace, AtlasMine, MasterOfCoin

ID Description Severity Status

QSP-1 can be front-run and exploitedupdateListing High Fixed

QSP-2 Incorrect vested amount computation in AtlasMine.withdrawPosition(...) High Fixed

QSP-3 might throwcancelListing Medium Fixed

QSP-4 might throwbuyItem Medium Fixed

QSP-5 Precision loss due to unused base multipliers Medium Unresolved

QSP-6 Loop concerns with high gas Medium Acknowledged

QSP-7 doesn't check the start timestampaddStream Low Acknowledged

QSP-8 Privileged roles and ownership Low Mitigated

QSP-9 Unhandled token balance when funding and defunding a stream Low Acknowledged

QSP-10 doesn't check the actual stream balancedefundStream Low Acknowledged

QSP-11 Magic reward boost doesn't follow the specifications Low Fixed

QSP-12 Uncapped fees Low Fixed

QSP-13 Events not emitted on state change Informational Acknowledged

QSP-14 Reentrancy in createListing Informational Fixed

QSP-15 Multiple 1:1 legions stakeable in error caselegionMetadataStore Undetermined Fixed

Quantstamp Audit Breakdown

Quantstamp's objective was to evaluate the repository for security-related issues, code quality, and adherence to specification and best practices.

Possible issues we looked for included (but are not limited to):

Transaction-ordering dependence•

Timestamp dependence•

Mishandled exceptions and call stack limits•

Unsafe external calls•

Integer overflow / underflow•

Number rounding errors•

Reentrancy and cross-function vulnerabilities•

Denial of service / logical oversights•

Access control•

Centralization of power•

Business logic contradicting the specification•

Code clones, functionality duplication•

Gas usage•

Arbitrary token minting•

Methodology

The Quantstamp auditing process follows a routine series of steps:

1. Code review that includes the following
i. Review of the specifications, sources, and instructions provided to Quantstamp to make sure we understand the size, scope, and functionality of the smart

contract.

ii. Manual review of code, which is the process of reading source code line-by-line in an attempt to identify potential vulnerabilities.

iii. Comparison to specification, which is the process of checking whether the code does what the specifications, sources, and instructions provided to Quantstamp
describe.

2. Testing and automated analysis that includes the following:
i. Test coverage analysis, which is the process of determining whether the test cases are actually covering the code and how much code is exercised when we run

those test cases.

ii. Symbolic execution, which is analyzing a program to determine what inputs cause each part of a program to execute.

3. Best practices review, which is a review of the smart contracts to improve efficiency, effectiveness, clarify, maintainability, security, and control based on the
established industry and academic practices, recommendations, and research.

4. Specific, itemized, and actionable recommendations to help you take steps to secure your smart contracts.

Toolset

The notes below outline the setup and steps performed in the process of this audit.

Setup

Tool Setup:

v0.8.3• Slither

Steps taken to run the tools:

1. Installed the Slither tool: pip install slither-analyzer

2. Run Slither from the project directory: slither .

Findings

QSP-1 can be front-run and exploitedupdateListing

Severity: High Risk

FixedStatus:

File(s) affected: TreasureMarketplace.sol

can be front-run by a buyer to possibly acquire more NFTs than the user is selling, especially in the case of ERC1155.

can also be front-run but has less impact on the end user.

Description: TreasureMarketplace.updateListing(...)
TreasureMarketplace._cancelListing(...)

Add a user input to validate that the quantity was not modified (withdrawn by a buyer that front run the seller).Recommendation:

QSP-2 Incorrect vested amount computation in AtlasMine.withdrawPosition(...)

Severity: High Risk

FixedStatus:

File(s) affected: AtlasMine.sol

returns an incoherent vested amount value. If is true it returns the

user full and if it returns the vested value since the last update of the user .

Description: AtlasMine.calcualteVestedPrincipal(...) block.timestamp >= vestingEnd || unlockAll
originalDepositAmount block.timestamp > user.vestingLastUpdate vestingLastUpdate

Consider an example where the user passes an amount that is less than the vested amount using AtlasMine.withdrawPosition(…). If the amount is lower than the ongoing vested amount the user

won't be able to withdraw the totality of his vested fund until the end of the vesting period (even if they are already vested).

Reimplement the above-mentioned function to solve the incorrect vesting computation.Recommendation:

QSP-3 might throwcancelListing

Severity: Medium Risk

FixedStatus:

File(s) affected: TreasureMarketplace.sol

might not work especially for the case of ERC1155 due to the fact that a user can transfer its NFT outside of the

, this is applicable due to the following requirement:

Description: TreasureMarketpalce.cancelListing
TreasureMarketplace

require(nft.balanceOf(_msgSender(), _tokenId) >= listedItem.quantity, "not owning item");

The requirement checks if the listedItem.quantity is lower or equal to the owner balance which might not be true, allowing possible Marketplace users to front-run the user and buy his NFTs.

We recommend checking if the msg.sender is actually the user that listed the tokens and deleting the listed item without checking if the quantity is enough.Recommendation:

QSP-4 might throwbuyItem

Severity: Medium Risk

FixedStatus:

File(s) affected: TreasureMarketplace.sol

might throw even if the below requirement is true:Description: TreasureMarketplace.buyItem(...)

require(listedItem.quantity >= _quantity, "not enough quantity");

Since the owner can transfer his NFTs outside of the Marketplace contract.

We recommend checking both user balance and the set quantity in the contract to return a correct error message.Recommendation: TreasureMarketplace

QSP-5 Precision loss due to unused base multipliers

Severity: Medium Risk

UnresolvedStatus:

File(s) affected: MasterOfCoin.sol

Computing the reward rate in or any other function should use a multiplier to raise the computation precision since a division is used to

compute the new reward rate, this issue is also applicable to , , etc…

Description: MasterOfCoin._fundStream(...)
MasterOfCoin.addStream(...) defundStream(...)

Multiply and divide the reward rate by a base multiplier wherever it is needed.Recommendation:

QSP-6 Loop concerns with high gas

https://github.com/crytic/slither

Severity: Medium Risk

AcknowledgedStatus:

File(s) affected: AtlasMine.sol

Description:

• Loop concerns regarding the execution of , the function is looping through the excluded addresses list which can reach a high gas consumption or

possibly block gas limit.

AtlasMine.utilization(...)

• loops through all user deposit ids which can quickly raise the gas consumption possibly reaching block gas limit and denying service for

NFT staking boost feature.

AtlasMine._recalculateLpAmount(...)

• Similarly , and can throw if the user's deposit Ids are large enough.AtlasMine.withdrawAll(..) harvestAll(...) withdrawAndHarvestAll(..)

We recommend carefully analyzing the possible gas consumption and its associated risks.Recommendation:

Team response: AtlasMine.utilization(…) is a very small array and is not a concern. AtlasMine.withdrawAll(..), harvestAll(…) and withdrawAndHarvestAll(..)

AtlasMine._recalculateLpAmount(…) are risks that we are aware of. For time being we accept these limitations as none of them are irreversible (closing positions by user makes them usable

again) however we will do our best to design better mechanism in future versions.

Update:

QSP-7 doesn't check the start timestampaddStream

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: MasterOfCoin.sol

does not check the start timestamp to be greater than the actual block timestamp, which can result in an incorrect stream reward distribution.Description: MasterOfCoin.addStream(...)

Add the necessary requirement.Recommendation:

Team response: AtlasMine.utilization(…) is a very small array and is not a concern. AtlasMine.withdrawAll(..), harvestAll(…) and withdrawAndHarvestAll(..)

AtlasMine._recalculateLpAmount(…) are risks that we are aware of. For time being we accept these limitations as none of them are irreversible (closing positions by user makes them usable

again) however we will do our best to design better mechanism in future versions.

Update:

QSP-8 Privileged roles and ownership

Severity: Low Risk

MitigatedStatus:

, ,File(s) affected: AtlasMine.sol MasterOfCoin.sol TreasureMarketplace.sol

Certain contracts have state variables, e.g. , which provide certain addresses with privileged roles. Such roles may pose a risk to end-users.Description: owner
The contract contains the following privileged roles:AtlasMine.sol

, as initialized during to :• ATLAS_MINE_ADMIN_ROLE init() msg.sender

Add/Remove addresses to , which impacts the utilization calculation, by calling and ,
respectively.

excludedAddresses addExcludedAddress() removeExcludedAddress()•

Set/Unset an arbitrary override value for the value returned by , by calling .utilization() setUtilizationOverride()•

Change at any time the token address, which is set during , to an arbitrary one, by calling .magic init() setMagicToken()•

Set to an arbitrary address (including , in which case treasure staking/unstaking is disabled), by calling .treasure address(0) setTreasure()•

Set to an arbitrary address (including , in which case legion staking/unstaking is disabled), by calling .legion address(0) setLegion()•

Set to an arbitrary address (used for legion 1:1 checking and legion nft boost computation), by calling .legionMetadataStore setLegionMetadataStore()•

Re-set the array to arbitrary values, by calling .legionBoostMatrix setLegionBoostMatrix()•

Set/Unset the emergency state, by calling .unlockAll toggleUnlockAll()•

Withdraw all undistributed rewards to an arbitrary address, by calling .withdrawUndistributedRewards()•

The contract contains the following privileged roles:MasterOfCoin.sol

, as initialized during to :• MASTER_OF_COIN_ADMIN_ROLE init() msg.sender

Add or remove streams, by calling and , respectively.addStream() removeStream()•

Increasing an active stream's and , by calling .ratePerSecond totalRewards fundStream()•

Decrease an active stream's and , by calling .ratePerSecond totalRewards defundStream()•

Modify a stream's , , and indirectly , by calling .startTimestamp lastRewardTimestamp endTimestamp ratePerSecond updateStreamTime()•

Enable/Disable registered stream addresses as callbacks, by calling .setCallback()•

Withdraw an arbitrary token amount to an arbitrary address, by calling .magic withdrawMagic()•

Set the token address to an arbitrary address, by calling .magic setMagicToken()•

The contract contains the following privileged roles:TreasureMarketPlace.sol

, as initialized during to :• TREASURE_MARKETPLACE_ADMIN_ROLE initialize() msg.sender

Set an arbitrary fee up to (), by calling .1500 BASIS_POINTS setFee()•

Set an abitrary address as a fee recipient, by calling .setFeeRecipient()•

Change the token approval status of arbitrary addresses (/ / - given they support the corresponding
interfaces), by calling .

NOT_APPROVED ERC_721_APPROVED ERC_1155_APPROVED

setTokenApprovalStatus()
•

Pause/Unpause the contract, thereby impacting the callability of , and , by calling / .createListing() updateListing() buyItem() pause() unpause()•

Clarify the impact of these privileged actions on the end-users via publicly facing documentation.Recommendation:

QSP-9 Unhandled token balance when funding and defunding a stream

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: MasterOfCoin.sol

Both and do not handle the reward token balance, meaning that the owner has the ability to possibly allow more or

less reward than what the actual contract balance contains.

Description: MasterOfCoin.fundStream(...) defundStream(...)

We recommend verifying the contract specification to avoid issues when distributing the rewards to the users.Recommendation:

Team response: Design assumption was to decouple reward distribution from token balance of the contract so the contract can be refilled periodically and does not require to store

extensive amount of token. Notice that if contract runs out of token, it stops rewards, however, the moment it is refilled, it resumes rewards as if nothing happened paying for the paused period

as well.

Update:

QSP-10 doesn't check the actual stream balancedefundStream

Severity: Low Risk

AcknowledgedStatus:

File(s) affected: MasterOfCoin.sol

does not check if the actual stream balance is enough, meaning that the amount to be removed can be lower than the actual contract

balance .

Description: MasterOfCoin.defundStream(...)
amount <= (stream.totalRewards - stream.paid)

We recommend adding the necessary check and similarly validating to be valid (enough tokens in the contract balance).Recommendation: MasterOfCoin.fundStream(...)

Team response: Note, as mentioned in QSP-9, decoupling stream rewards from contract’s actual token balance is intentional.Update:

QSP-11 Magic reward boost doesn't follow the specifications

Severity: Low Risk

FixedStatus:

File(s) affected: AtlasMine.sol

does not follow the specification written in the project README. The percentages are not respected. We recommend clarifying this

discrepancy.

Description: AtlasMine.getRealMagicReward(...)

Validate if it is an intended change.Recommendation:

QSP-12 Uncapped fees

Severity: Low Risk

FixedStatus:

File(s) affected: TreasureMarketplace

Function does not constrain the input other than the maximum of 100% (BASIS_POINTS = 10000). This can subject users high fees with

no prior announcements.

Description: TreasureMarketplace.setFee() _fee

Consider adding a MAX_FEE bound and state the max fee in public-facing documentation.Recommendation:

QSP-13 Events not emitted on state change

Severity: Informational

AcknowledgedStatus:

,File(s) affected: AtlasMine.sol MasterOfCoin.sol

An event should always be emitted when a state change is performed in order to facilitate smart contract monitoring by other systems which want to integrate with the smart

contract.

Description:

This is not the case for the functions and the correspondingly modified state variables:

1. , after changing .AtlasMine.addExcludedAddress() excludedAddresses

2. , after changing .AtlasMine.removeExcludedAddress() excludedAddresses

3. , after changing .AtlasMine.setUtilizationOverride() utilizationOverride

4. , after changing .AtlasMine.setMagicToken() magic

5. , after changing .AtlasMine.setTreasure() treasure

6. , after changing .AtlasMine.setLegion() legion

7. , after changing .AtlasMine.setLegionMetadataStore() legionMetadataStore

8. , after changing .AtlasMine.setLegionBoostMatrix() legionBoostMatrix

9. , after changing .AtlasMine.toggleUnlockAll() unlockAll

10. , after changing .AtlasMine.withdrawUndistributedRewards() totalUndistributedRewards

11. , after changing .MasterOfCoin.setMagicToken() magic

Emit an event in the aforementioned functions.Recommendation:

The team acknowledges that events are a best practice and they should be added. However, events are not currently used and the team wants to minimize number and size of a code

updates to smart contracts at this time. This will be improved in future version.

Update:

QSP-14 Reentrancy in createListing

Severity: Informational

FixedStatus:

File(s) affected: TreasureMarketplace

performs calls to an external contract , before updating state variables and thereby violating the

"Checks-Effects-Interactions" pattern. As only whitelisted addresses may be used for and the state changes done are only the creation of a listing, the likelihood as well as the

impact for this are low and therefore this is purely informational.

Description: TreasureMarketplace.createListing() _nftAddress listings
_nftAddress

Consider adding the modifier to function .Recommendation: nonReentrant createListing()

QSP-15 Multiple 1:1 legions stakeable in error caselegionMetadataStore

Severity: Undetermined

FixedStatus:

File(s) affected: AtlasMine.sol

Function is used in to check if a given corresponds to a 1:1 legion and if so check whether or not a 1:1

legion was already staked. In the scenario where returns an error within , the function would just return false (not revert) and would allow for

staking/unstaking multiple 1:1 legions.

Description: AtlasMine.isLegion1_1() AtlasMine.stakeLegion() _tokenId
legionMetadataStore isLegion1_1()

Clarify this scenario and/or consider replacing the in in the metadata store error cases with reverts.Recommendation: return false isLegion1_1

Automated Analyses

Slither

Slither did not return any significant result

Adherence to Best Practices

1. does not respect the CEIP. Even if there is possibly no associated risk right now due to the usage of modifier we

recommend moving all state variable changes before any external call.

TreasureMarketplace._buyItem nonReentrant

2. For better readability and gas consumption we recommend changing the implemented logic in to mapping to avoid any

confusion.

AtlasMine.getTreasureBoost(...)

3. Typo: ,AtlasMine.calcualteVestedPrincipal TreasureMarketplace.creatisgn

4. To facilitate logging it is recommended to index address parameters within events. Therefore the keyword should be added to the (other) address parameters inindexed

1. ,MasterOfCoin.StreamGrant()

2. ,MasterOfCoin.Withdraw()

3. ,MasterOfCoin.CallbackSet()

4. ,AtlasMine.Staked()

5. ,AtlasMine.Unstaked()

6. ,TreasureMarketPlace.UpdateFeeRecipient()

7. ,TreasureMarketPlace.ItemListed()

8. ,TreasureMarketPlace.ItemUpdated()

9. TreasureMarketPlace.ItemSold()

10. .TreasureMarketPlace.TokenApprovalStatusUpdated()

5. For improved readability and code quality it is advised to remove duplicate or unused code. In this regard the check

in L298 of may be removed, as for listings and updates it is ensured that

is always greater or equal to (1e9).

require(listedItem.pricePerItem > 0,
"TreasureMarketplace: listing price invalid"); TreasureMarketplace.sol
pricePerItem MIN_PRICE

Test Results

Test Suite Results

TreasureMarketplace
init

✔ initialize()
✔ setFee() (89ms)
✔ setFeeRecipient() (73ms)
✔ approve token (96ms)
✔ unapprove token (106ms)

✔ pause() & unpause() (68ms)
ERC721

with NFT minted
✔ createListing() (202ms)
with listing

1) updateListing()
✔ cancelListing() (63ms)
✔ buyItem() (265ms)
✔ buyItem() with quantity 0
token approval revoked

✔ buyItem()
ERC1155

with NFT minted
✔ createListing() (136ms)
expirationTime

✔ success (152ms)
✔ expired

with listing
2) updateListing()
✔ cancelListing() (107ms)
buyItem()

✔ all (183ms)
✔ partial (159ms)

17 passing (6s)
2 failing

1) TreasureMarketplace
ERC721

with NFT minted
with listing

updateListing():
AssertionError: Expected transaction to be reverted with Pausable: paused, but other exception was thrown: Error: missing argument: passed to contract (count=5, expectedCount=6, code=MISSING_ARGUMENT,

version=contracts/5.6.0)

2) TreasureMarketplace
ERC1155

with NFT minted
with listing

updateListing():
AssertionError: Expected transaction to be reverted with not listed item, but other exception was thrown: Error: missing argument: passed to contract (count=5, expectedCount=6, code=MISSING_ARGUMENT,

version=contracts/5.6.0)

AtlasMine
✔ init()
✔ getLockBoost()
✔ setMagicToken()
✔ setTreasure()
✔ setLegion()
✔ setLegionMetadataStore()
✔ setLegionBoostMatrix() (319ms)
✔ isLegion1_1() (147ms)
with multiple deposits

✔ deposit()
✔ magicTotalDeposits()
✔ withdrawPosition() (1104ms)
✔ withdrawAll() (806ms)
✔ harvestPosition() (515ms)
✔ harvestAll() (4560ms)
✔ withdrawAndHarvestPosition() (794ms)
✔ withdrawAndHarvestAll() (4709ms)
✔ toggleUnlockAll() (807ms)
✔ withdrawUndistributedRewards() (402ms)
- calcualteVestedPrincipal()
utilization

✔ getExcludedAddresses() && utilization() && addExcludedAddress() && removeExcludedAddress() (1672ms)
✔ setUtilizationOverride() (720ms)
✔ getRealMagicReward() (536ms)

NFT staking
✔ getNftBoost()
✔ harvest scenarios with staking (4352ms)
stakeTreasure()

✔ Cannot stake Treasure (39ms)
✔ Amount is 0
✔ Max 20 treasures per wallet (765ms)
✔ stake boosts (744ms)

stakeLegion()
✔ Cannot stake Legion
✔ NFT already staked (258ms)
✔ Max 3 legions per wallet (968ms)
✔ Max 1 1/1 legion per wallet (401ms)
✔ stake boosts (1061ms)

limit of deposits
Deposits: 3, GasLimit: 227357
Deposits: 10, GasLimit: 241724
Deposits: 50, GasLimit: 624994
Deposits: 100, GasLimit: 1107511
Deposits: 200, GasLimit: 2064665
Deposits: 500, GasLimit: 4968011
Deposits: 1000, GasLimit: 9693977
Deposits: 1250, GasLimit: 12104647
Deposits: 1500, GasLimit: 14497133
Deposits: 1750, GasLimit: 16897584
Deposits: 2000, GasLimit: 19313720
Deposits: 2250, GasLimit: 21700950
Deposits: 2500, GasLimit: 24082428
Deposits: 2750, GasLimit: 26480028
Deposits: 3000, GasLimit: 28905377

✔ makes deposits and stakes NFT (834776ms)
with NFTs staked

✔ Withdraw amount too big
✔ NFT is not staked
✔ unstake boosts (2179ms)

MasterOfCoin
use proxy

✔ init()
✔ magic()
✔ MASTER_OF_COIN_ADMIN_ROLE()
✔ hasRole()
✔ grantRole() (59ms)
✔ addStream() (114ms)
with streams

✔ getStreams()
✔ addStream()
✔ getRatePerSecond()
✔ getGlobalRatePerSecond()
✔ getPendingRewards() (97ms)
✔ grantTokenToStream() (168ms)
✔ fundStream() (131ms)
✔ defundStream() (128ms)
✔ updateStreamTime() (365ms)
✔ removeStream() (161ms)
✔ withdrawMagic() (56ms)

requestRewards()
✔ [0] requestRewards() (45ms)
✔ [1] requestRewards() (45ms)
✔ [2] requestRewards() (49ms)
✔ [3] requestRewards() (64ms)
✔ [4] requestRewards() (50ms)
✔ [5] requestRewards() (48ms)
✔ [6] requestRewards()

60 passing (15m)
1 pending

Code Coverage

Quantstamp usually recommends developers increase the branch coverage to 90% and above before a project goes live, in order to avoid hidden functional bugs that

might not be easy to spot during the development phase. For branch code coverage, the current targeted files by the audit achieve a lower score that should be improved

further.

File % Stmts % Branch % Funcs % Lines Uncovered Lines

AtlasMine.sol 82.93 72.63 93.18 79.1 … 656,658,660

MasterOfCoin.sol 96.2 67.5 100 98.75 139

Appendix

File Signatures

The following are the SHA-256 hashes of the reviewed files. A file with a different SHA-256 hash has been modified, intentionally or otherwise, after the security review. You are cautioned that a
different SHA-256 hash could be (but is not necessarily) an indication of a changed condition or potential vulnerability that was not within the scope of the review.

Contracts

d0c6149e948fdc911d87ce4d2c887233dbbbbec9c802f1b462fba41b3282e937 ./TreasureMarketplace.sol

369c21c7032f6db143b30bcb03d0290b0a6a23150e421fd6053f991ecfe2daef ./AtlasMine.sol

8bee631a7723d19701cf1b84bac7e8a3cfc2e78cfaedb4c858ac433f1b0346bf ./AtlasMineV1.sol

58ab93a66f75e0a7c763b4554358686546c61ce4b39c18fa68f3d803b788a076 ./MasterOfCoin.sol

ecf2037f519cd1ca2be9a8bc8530001f0d7401b97c0a15ede8495239615be27f ./MasterOfCoinV1.sol

Tests

59556024a2812ce29677ff3bb8123f8a841049cd2577befe0ccccf1a5279c922 ./TreasureMarketplace.test.ts

f855e06bc93091c63db11b24178f73e531fbb33560541288e3fcc981280eb2c5 ./AtlasMine.test.ts

d4b5f17f393c3af8ecfcbf52048c8a650ff3b145397a257545a5d009853abead ./MasterOfCoin.test.ts

Changelog

2022-03-20 - Initial report•

2022-04-07 - Audit commit 940ffde for TreasureMarketPlace•

2022-04-22 - Final report delivery•

2022-04-27 - Updated report for QSP-1 fix commit c731073•

About Quantstamp

Quantstamp is a Y Combinator-backed company that helps to secure blockchain platforms at scale using computer-aided reasoning tools, with a mission to help boost the

adoption of this exponentially growing technology.

With over 1000 Google scholar citations and numerous published papers, Quantstamp's team has decades of combined experience in formal verification, static analysis,

and software verification. Quantstamp has also developed a protocol to help smart contract developers and projects worldwide to perform cost-effective smart contract

security scans.

To date, Quantstamp has protected $5B in digital asset risk from hackers and assisted dozens of blockchain projects globally through its white glove security assessment

services. As an evangelist of the blockchain ecosystem, Quantstamp assists core infrastructure projects and leading community initiatives such as the Ethereum

Community Fund to expedite the adoption of blockchain technology.

Quantstamp's collaborations with leading academic institutions such as the National University of Singapore and MIT (Massachusetts Institute of Technology) reflect our

commitment to research, development, and enabling world-class blockchain security.

Timeliness of content

The content contained in the report is current as of the date appearing on the report and is subject to change without notice, unless indicated otherwise by Quantstamp;

however, Quantstamp does not guarantee or warrant the accuracy, timeliness, or completeness of any report you access using the internet or other means, and assumes

no obligation to update any information following publication.

Notice of confidentiality

This report, including the content, data, and underlying methodologies, are subject to the confidentiality and feedback provisions in your agreement with Quantstamp.

These materials are not to be disclosed, extracted, copied, or distributed except to the extent expressly authorized by Quantstamp.

Links to other websites

You may, through hypertext or other computer links, gain access to web sites operated by persons other than Quantstamp, Inc. (Quantstamp). Such hyperlinks are

provided for your reference and convenience only, and are the exclusive responsibility of such web sites' owners. You agree that Quantstamp are not responsible for the

content or operation of such web sites, and that Quantstamp shall have no liability to you or any other person or entity for the use of third-party web sites. Except as

described below, a hyperlink from this web site to another web site does not imply or mean that Quantstamp endorses the content on that web site or the operator or

operations of that site. You are solely responsible for determining the extent to which you may use any content at any other web sites to which you link from the report.

Quantstamp assumes no responsibility for the use of third-party software on the website and shall have no liability whatsoever to any person or entity for the accuracy or

completeness of any outcome generated by such software.

Disclaimer

This report is based on the scope of materials and documentation provided for a limited review at the time provided. Results may not be complete nor inclusive of all

vulnerabilities. The review and this report are provided on an as-is, where-is, and as-available basis. You agree that your access and/or use, including but not limited to any

associated services, products, protocols, platforms, content, and materials, will be at your sole risk. Blockchain technology remains under development and is subject to

unknown risks and flaws. The review does not extend to the compiler layer, or any other areas beyond the programming language, or other programming aspects that

could present security risks. A report does not indicate the endorsement of any particular project or team, nor guarantee its security. No third party should rely on the

reports in any way, including for the purpose of making any decisions to buy or sell a product, service or any other asset. To the fullest extent permitted by law, we disclaim

all warranties, expressed or implied, in connection with this report, its content, and the related services and products and your use thereof, including, without limitation, the

implied warranties of merchantability, fitness for a particular purpose, and non-infringement. We do not warrant, endorse, guarantee, or assume responsibility for any

product or service advertised or offered by a third party through the product, any open source or third-party software, code, libraries, materials, or information linked to,

called by, referenced by or accessible through the report, its content, and the related services and products, any hyperlinked websites, any websites or mobile applications

appearing on any advertising, and we will not be a party to or in any way be responsible for monitoring any transaction between you and any third-party providers of

products or services. As with the purchase or use of a product or service through any medium or in any environment, you should use your best judgment and exercise

caution where appropriate. FOR AVOIDANCE OF DOUBT, THE REPORT, ITS CONTENT, ACCESS, AND/OR USAGE THEREOF, INCLUDING ANY ASSOCIATED SERVICES OR

MATERIALS, SHALL NOT BE CONSIDERED OR RELIED UPON AS ANY FORM OF FINANCIAL, INVESTMENT, TAX, LEGAL, REGULATORY, OR OTHER ADVICE.

TreasureDAO Audit

